| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 | <!doctype html><html lang="en">	<head>		<meta charset="utf-8">		<title>reveal.js - The HTML Presentation Framework</title>		<meta name="description" content="A framework for easily creating beautiful presentations using HTML">		<meta name="author" content="Hakim El Hattab">		<meta name="apple-mobile-web-app-capable" content="yes" />		<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent" />		<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">		<link rel="stylesheet" href="../css/reveal.min.css">		<link rel="stylesheet" href="../css/theme/night.css" id="theme">		<!-- For syntax highlighting -->		<link rel="stylesheet" href="../lib/css/zenburn.css">		<!--[if lt IE 9]>		<script src="lib/js/html5shiv.js"></script>		<![endif]-->	</head>	<body>		<div class="reveal">			<div class="slides">				<section>					<h2>reveal.js Math Plugin</h2>					<p>A thin wrapper for MathJax</p>				</section>				<section>					<h3>The Lorenz Equations</h3>					\[\begin{aligned}					\dot{x} & = \sigma(y-x) \\					\dot{y} & = \rho x - y - xz \\					\dot{z} & = -\beta z + xy					\end{aligned} \]				</section>				<section>					<h3>The Cauchy-Schwarz Inequality</h3>					\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]				</section>				<section>					<h3>A Cross Product Formula</h3>					\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}					\mathbf{i} & \mathbf{j} & \mathbf{k} \\					\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\					\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0					\end{vmatrix}  \]				</section>				<section>					<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>					\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]				</section>				<section>					<h3>An Identity of Ramanujan</h3>					\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =					1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}					{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]				</section>				<section>					<h3>A Rogers-Ramanujan Identity</h3>					\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =					\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]				</section>				<section>					<h3>Maxwell’s Equations</h3>					\[  \begin{aligned}					\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\					\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\					\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}					\]				</section>			</div>		</div>		<script src="../lib/js/head.min.js"></script>		<script src="../js/reveal.min.js"></script>		<script>			Reveal.initialize({				transition: 'linear',				dependencies: [					{ src: '../lib/js/classList.js', condition: function() { return !document.body.classList; } },					{ src: '../plugin/markdown/marked.js', condition: function() { return !!document.querySelector( '[data-markdown]' ); } },					{ src: '../plugin/markdown/markdown.js', condition: function() { return !!document.querySelector( '[data-markdown]' ); } },					{ src: '../plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } },					{ src: '../plugin/math/math.js', async: true }				]			});		</script>	</body></html>
 |