Creating Elaborate DynamoDB Tables

X A Stefan Roman
Pl = =~ DEVOPS ENGINEER
| PREY

.‘; | ;. w
\:‘ . _‘-’ t

www.katapult.cloud

Planning Table Throughput Capacity

Read Capacity Units (RCU)

1 or 2 read operation per second of
4KB

Write Capacity Units (WCU)

1 write operation per second of 1KB

Planning Table Throughput Capacity

Emma AZ 1

Table

Planning Table Throughput Capacity

AZ1

o
Rebecca Table

o"'.'..
o
o "..‘
.w"’#’
e
@orooosconnnnnressssssnnnnnsssss -
[] 'A
°

Planning Table Throughput Capacity

Eventually Consistent Reads Strongly Consistent Reads

Applications that DO NOT Applications that DO immediately
immediately query updated items. guery updated items.

Planning Table Throughput Capacity

Q Requirements to calculate expected
throughput:

O - size of items
- amount of items

v - read consistency

Apphcatmn requires to read 10 1

of arounc

ever

C

1K

Jally consistent reads.

53 each per second,

LEIMS

Using

Planning Table Throughput Capacity

How many read units per item needed?

Round up item size to nearest 4KB increment
4KB / 4KB =1 Read Unit

How many read capacity units?

Multiply read unit per item by number of reads
required per second

1x 10 =10 Read Capacity Units

What read consistency our app uses?
Eventually consistent divide by 2

Application requires to read 4 items
of around 14KB each per second,
Using strongly consistent reads.

Planning Table Throughput Capacity

How many read units per item needed?

Round up item size to nearest 4KB increment
16KB / 4KB = 4 read units

How many read capacity units?

Multiply read unit per item by number of reads
required per second

4 x 10 = 40 Read Capacity Units

What read consistency our app uses?
Strongly consistent divide by 1

Application requires to write 10 items
of around /KB each per second.

Planning Table Throughput Capacity

How many write capacity units?

. Multiply kilobytes by number of writes
required per second

= / x10 = 70 Write Capacity Units

An application that exceeds provisioned capacity will
have additional requests throttled.

Planning Table Throughput Capacity

Provisioned Autoscaling
Predict traffic patterns
Paying for provisioned capacity

Capping performance and price

On-demand Autoscaling

Unpredictable traffic patterns
Paying for amount of requests

Unlimited performance and price

On-demand autoscaling table

Provisioned throughput autoscaling table

Understanding Secondary Indices

"Name": "Bob",

"Age" : 26,

"Company”: "Globomantics"”,
"Position”: "DevOps”

Understanding Secondary Indices

Local Secondary Index Global Secondary Index

Understanding Secondary Indices

Local Secondary Index

Same Partition but different Sort key
Scoped to base table partitions
Shares throughput settings and pricing

5 indexes maximum

Global Secondary Index

Different Partition and Sort key
Spans across all partitions
Own throughput settings and pricing

20 indexes maximum

Understanding Secondary Indices

{
"Name": "Bob",
. 26,
"Company”: "Globomantics"”,
"Position”: "DevOps”

}

Understanding Secondary Indices

Local Secondary Index

Same Partition but different Sort key
Scoped to base table partitions
Shares throughput settings and pricing

5 indexes maximum

Global Secondary Index

Different Partition and Sort key
Spans across all partitions
Own throughput settings and pricing

20 indexes maximum

Understanding Secondary Indices

{
"Name": "Bob",
. 26,
"Company”: "Globomantics”,
"Position”: "DevOps”

}

Understanding Secondary Indices

Local Secondary Index

Same Partition but different Sort key
Scoped to base table partitions
Shares throughput settings and pricing

5 indexes maximum

Global Secondary Index

Different Partition and Sort key
Spans across all partitions
Own throughput settings and pricing

20 indexes maximum

Understanding Secondary Indices

INCLUDE

KEYS ONLY ALL

Includes selected

Only primary keys Attributes All attributes in an item

Create a table with Local Secondary
Index

Add Global Secondary Index to the same
table

Master to Master Replication

|deal for
Multi-region
Applications

Replicates Items to

Collection of Tables All Tables

AL N

Master to Master Replication

Same write capacity is required
Must have the same name
Must have the same primary key

Tables must be empty

Master to Master Replication

Peter 1 l Jane

Ireland Table Sydney Table

Master to Master Replication

Peter 1 l Jane

Ireland Table Sydney Table

» H - @ R

Master to Master Replication

Capturing table activity
Contains data modification information

Logs activity up to 24 hours

Master to Master Replication

Keys Only New Image

Old Image New and Old Images

Create a basic table

Enable DynamoDB streams and create a
replica table

Observe replication

—Ncrypting Iltems

Encryption is enabled by default
- At-rest
- In-transit

Encrypts DynamoDB streams

Encrypts Local and Global secondary
indices

Setting Item Expiration

"ID": 562651,
"User": "Bob",
"Access": "Granted”

Setting Item Expiration

"ID": 562651,
"User": "Bob",

"Access”: "Granted”,
"Expire”: 1525568400

Create a basic table
Enable Time-to-Live option
Add items with Time-to-Live attribute

Observe item deletion

Designing

"Bob"

......................... KEY

KEY

"Bob”

'..... "Bobll

| kEY

"Bob"

1kEey

—fficient Primary Keys

Partition

Designing Efficient Primary Keys

Partition
Website

Designing Efficient Primary Keys

"Bob-23" Partition1

"Bob-55" Partition3

"Bob-30" Partition4

% KEY > @

T ©

"Bob-26" Partition2

j .. ©

[S

ﬁ

\—J

Designing

KEY

—fficient Primary Keys

Partition key recommendations:
- Use combination of known information

- Querying data is difficult with randomly
generated Partition keys

Designing Efficient Primary Keys

Sort key recommendations:
- Data can be queried with:
. starts-with

. between
o >

e <

Designing Efficient Primary Keys

"Name": "Bob",
:[continent]#[state]#[city]

Create an elaborate employee
directory table

Accessed by busy website

- Ability to query data based on random
strings

Application that tracks access

Ability to query data based on
random strings

Updates date accessed
Sort items based on Name

Application that tracks down temporary
employees:

Needs to have access to all
attributes in items

Query based on Position and
Contract Type

Accessed from multiple parts of the
world - Sydney, Dublin, Oregon and India

Remove expired temporary employee
items

Extremely unpredictable

summary

Calculating throughput capacity

Read consistency
- Eventual consistency
- Strong consistency

DynamoDB autoscaling
- Provisioned capacity
- On-demand

Local and Global secondary index

Global tables and streams

summary

Time-to-Live attribute

Designing partition and sort keys

summary

Elaborate global table
- Design of primary key
- Deployed table globally
- Designed secondary indices
- Implemented TTL

