// Code generated by entc, DO NOT EDIT. package car import ( "time" "code.osinet.fr/fgm/entdemo/ent/predicate" "github.com/facebookincubator/ent/dialect/sql" "github.com/facebookincubator/ent/dialect/sql/sqlgraph" ) // ID filters vertices based on their identifier. func ID(id int) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldID), id)) }) } // IDEQ applies the EQ predicate on the ID field. func IDEQ(id int) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldID), id)) }) } // IDNEQ applies the NEQ predicate on the ID field. func IDNEQ(id int) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldID), id)) }) } // IDIn applies the In predicate on the ID field. func IDIn(ids ...int) predicate.Car { return predicate.Car(func(s *sql.Selector) { // if not arguments were provided, append the FALSE constants, // since we can't apply "IN ()". This will make this predicate falsy. if len(ids) == 0 { s.Where(sql.False()) return } v := make([]interface{}, len(ids)) for i := range v { v[i] = ids[i] } s.Where(sql.In(s.C(FieldID), v...)) }) } // IDNotIn applies the NotIn predicate on the ID field. func IDNotIn(ids ...int) predicate.Car { return predicate.Car(func(s *sql.Selector) { // if not arguments were provided, append the FALSE constants, // since we can't apply "IN ()". This will make this predicate falsy. if len(ids) == 0 { s.Where(sql.False()) return } v := make([]interface{}, len(ids)) for i := range v { v[i] = ids[i] } s.Where(sql.NotIn(s.C(FieldID), v...)) }) } // IDGT applies the GT predicate on the ID field. func IDGT(id int) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldID), id)) }) } // IDGTE applies the GTE predicate on the ID field. func IDGTE(id int) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldID), id)) }) } // IDLT applies the LT predicate on the ID field. func IDLT(id int) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldID), id)) }) } // IDLTE applies the LTE predicate on the ID field. func IDLTE(id int) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldID), id)) }) } // Model applies equality check predicate on the "model" field. It's identical to ModelEQ. func Model(v string) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldModel), v)) }) } // RegisteredAt applies equality check predicate on the "registered_at" field. It's identical to RegisteredAtEQ. func RegisteredAt(v time.Time) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldRegisteredAt), v)) }) } // ModelEQ applies the EQ predicate on the "model" field. func ModelEQ(v string) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldModel), v)) }) } // ModelNEQ applies the NEQ predicate on the "model" field. func ModelNEQ(v string) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldModel), v)) }) } // ModelIn applies the In predicate on the "model" field. func ModelIn(vs ...string) predicate.Car { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Car(func(s *sql.Selector) { // if not arguments were provided, append the FALSE constants, // since we can't apply "IN ()". This will make this predicate falsy. if len(vs) == 0 { s.Where(sql.False()) return } s.Where(sql.In(s.C(FieldModel), v...)) }) } // ModelNotIn applies the NotIn predicate on the "model" field. func ModelNotIn(vs ...string) predicate.Car { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Car(func(s *sql.Selector) { // if not arguments were provided, append the FALSE constants, // since we can't apply "IN ()". This will make this predicate falsy. if len(vs) == 0 { s.Where(sql.False()) return } s.Where(sql.NotIn(s.C(FieldModel), v...)) }) } // ModelGT applies the GT predicate on the "model" field. func ModelGT(v string) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldModel), v)) }) } // ModelGTE applies the GTE predicate on the "model" field. func ModelGTE(v string) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldModel), v)) }) } // ModelLT applies the LT predicate on the "model" field. func ModelLT(v string) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldModel), v)) }) } // ModelLTE applies the LTE predicate on the "model" field. func ModelLTE(v string) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldModel), v)) }) } // ModelContains applies the Contains predicate on the "model" field. func ModelContains(v string) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.Contains(s.C(FieldModel), v)) }) } // ModelHasPrefix applies the HasPrefix predicate on the "model" field. func ModelHasPrefix(v string) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.HasPrefix(s.C(FieldModel), v)) }) } // ModelHasSuffix applies the HasSuffix predicate on the "model" field. func ModelHasSuffix(v string) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.HasSuffix(s.C(FieldModel), v)) }) } // ModelEqualFold applies the EqualFold predicate on the "model" field. func ModelEqualFold(v string) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.EqualFold(s.C(FieldModel), v)) }) } // ModelContainsFold applies the ContainsFold predicate on the "model" field. func ModelContainsFold(v string) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.ContainsFold(s.C(FieldModel), v)) }) } // RegisteredAtEQ applies the EQ predicate on the "registered_at" field. func RegisteredAtEQ(v time.Time) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldRegisteredAt), v)) }) } // RegisteredAtNEQ applies the NEQ predicate on the "registered_at" field. func RegisteredAtNEQ(v time.Time) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldRegisteredAt), v)) }) } // RegisteredAtIn applies the In predicate on the "registered_at" field. func RegisteredAtIn(vs ...time.Time) predicate.Car { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Car(func(s *sql.Selector) { // if not arguments were provided, append the FALSE constants, // since we can't apply "IN ()". This will make this predicate falsy. if len(vs) == 0 { s.Where(sql.False()) return } s.Where(sql.In(s.C(FieldRegisteredAt), v...)) }) } // RegisteredAtNotIn applies the NotIn predicate on the "registered_at" field. func RegisteredAtNotIn(vs ...time.Time) predicate.Car { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Car(func(s *sql.Selector) { // if not arguments were provided, append the FALSE constants, // since we can't apply "IN ()". This will make this predicate falsy. if len(vs) == 0 { s.Where(sql.False()) return } s.Where(sql.NotIn(s.C(FieldRegisteredAt), v...)) }) } // RegisteredAtGT applies the GT predicate on the "registered_at" field. func RegisteredAtGT(v time.Time) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldRegisteredAt), v)) }) } // RegisteredAtGTE applies the GTE predicate on the "registered_at" field. func RegisteredAtGTE(v time.Time) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldRegisteredAt), v)) }) } // RegisteredAtLT applies the LT predicate on the "registered_at" field. func RegisteredAtLT(v time.Time) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldRegisteredAt), v)) }) } // RegisteredAtLTE applies the LTE predicate on the "registered_at" field. func RegisteredAtLTE(v time.Time) predicate.Car { return predicate.Car(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldRegisteredAt), v)) }) } // HasOwner applies the HasEdge predicate on the "owner" edge. func HasOwner() predicate.Car { return predicate.Car(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(OwnerTable, FieldID), sqlgraph.Edge(sqlgraph.M2O, true, OwnerTable, OwnerColumn), ) sqlgraph.HasNeighbors(s, step) }) } // HasOwnerWith applies the HasEdge predicate on the "owner" edge with a given conditions (other predicates). func HasOwnerWith(preds ...predicate.User) predicate.Car { return predicate.Car(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(OwnerInverseTable, FieldID), sqlgraph.Edge(sqlgraph.M2O, true, OwnerTable, OwnerColumn), ) sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) { for _, p := range preds { p(s) } }) }) } // And groups list of predicates with the AND operator between them. func And(predicates ...predicate.Car) predicate.Car { return predicate.Car(func(s *sql.Selector) { s1 := s.Clone().SetP(nil) for _, p := range predicates { p(s1) } s.Where(s1.P()) }) } // Or groups list of predicates with the OR operator between them. func Or(predicates ...predicate.Car) predicate.Car { return predicate.Car(func(s *sql.Selector) { s1 := s.Clone().SetP(nil) for i, p := range predicates { if i > 0 { s1.Or() } p(s1) } s.Where(s1.P()) }) } // Not applies the not operator on the given predicate. func Not(p predicate.Car) predicate.Car { return predicate.Car(func(s *sql.Selector) { p(s.Not()) }) }