// Code generated by entc, DO NOT EDIT. package user import ( "code.osinet.fr/fgm/entdemo/ent/predicate" "github.com/facebookincubator/ent/dialect/sql" "github.com/facebookincubator/ent/dialect/sql/sqlgraph" ) // ID filters vertices based on their identifier. func ID(id int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldID), id)) }) } // IDEQ applies the EQ predicate on the ID field. func IDEQ(id int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldID), id)) }) } // IDNEQ applies the NEQ predicate on the ID field. func IDNEQ(id int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldID), id)) }) } // IDIn applies the In predicate on the ID field. func IDIn(ids ...int) predicate.User { return predicate.User(func(s *sql.Selector) { // if not arguments were provided, append the FALSE constants, // since we can't apply "IN ()". This will make this predicate falsy. if len(ids) == 0 { s.Where(sql.False()) return } v := make([]interface{}, len(ids)) for i := range v { v[i] = ids[i] } s.Where(sql.In(s.C(FieldID), v...)) }) } // IDNotIn applies the NotIn predicate on the ID field. func IDNotIn(ids ...int) predicate.User { return predicate.User(func(s *sql.Selector) { // if not arguments were provided, append the FALSE constants, // since we can't apply "IN ()". This will make this predicate falsy. if len(ids) == 0 { s.Where(sql.False()) return } v := make([]interface{}, len(ids)) for i := range v { v[i] = ids[i] } s.Where(sql.NotIn(s.C(FieldID), v...)) }) } // IDGT applies the GT predicate on the ID field. func IDGT(id int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldID), id)) }) } // IDGTE applies the GTE predicate on the ID field. func IDGTE(id int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldID), id)) }) } // IDLT applies the LT predicate on the ID field. func IDLT(id int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldID), id)) }) } // IDLTE applies the LTE predicate on the ID field. func IDLTE(id int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldID), id)) }) } // Age applies equality check predicate on the "age" field. It's identical to AgeEQ. func Age(v int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldAge), v)) }) } // Name applies equality check predicate on the "name" field. It's identical to NameEQ. func Name(v string) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldName), v)) }) } // AgeEQ applies the EQ predicate on the "age" field. func AgeEQ(v int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldAge), v)) }) } // AgeNEQ applies the NEQ predicate on the "age" field. func AgeNEQ(v int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldAge), v)) }) } // AgeIn applies the In predicate on the "age" field. func AgeIn(vs ...int) predicate.User { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.User(func(s *sql.Selector) { // if not arguments were provided, append the FALSE constants, // since we can't apply "IN ()". This will make this predicate falsy. if len(vs) == 0 { s.Where(sql.False()) return } s.Where(sql.In(s.C(FieldAge), v...)) }) } // AgeNotIn applies the NotIn predicate on the "age" field. func AgeNotIn(vs ...int) predicate.User { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.User(func(s *sql.Selector) { // if not arguments were provided, append the FALSE constants, // since we can't apply "IN ()". This will make this predicate falsy. if len(vs) == 0 { s.Where(sql.False()) return } s.Where(sql.NotIn(s.C(FieldAge), v...)) }) } // AgeGT applies the GT predicate on the "age" field. func AgeGT(v int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldAge), v)) }) } // AgeGTE applies the GTE predicate on the "age" field. func AgeGTE(v int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldAge), v)) }) } // AgeLT applies the LT predicate on the "age" field. func AgeLT(v int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldAge), v)) }) } // AgeLTE applies the LTE predicate on the "age" field. func AgeLTE(v int) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldAge), v)) }) } // NameEQ applies the EQ predicate on the "name" field. func NameEQ(v string) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldName), v)) }) } // NameNEQ applies the NEQ predicate on the "name" field. func NameNEQ(v string) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldName), v)) }) } // NameIn applies the In predicate on the "name" field. func NameIn(vs ...string) predicate.User { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.User(func(s *sql.Selector) { // if not arguments were provided, append the FALSE constants, // since we can't apply "IN ()". This will make this predicate falsy. if len(vs) == 0 { s.Where(sql.False()) return } s.Where(sql.In(s.C(FieldName), v...)) }) } // NameNotIn applies the NotIn predicate on the "name" field. func NameNotIn(vs ...string) predicate.User { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.User(func(s *sql.Selector) { // if not arguments were provided, append the FALSE constants, // since we can't apply "IN ()". This will make this predicate falsy. if len(vs) == 0 { s.Where(sql.False()) return } s.Where(sql.NotIn(s.C(FieldName), v...)) }) } // NameGT applies the GT predicate on the "name" field. func NameGT(v string) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldName), v)) }) } // NameGTE applies the GTE predicate on the "name" field. func NameGTE(v string) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldName), v)) }) } // NameLT applies the LT predicate on the "name" field. func NameLT(v string) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldName), v)) }) } // NameLTE applies the LTE predicate on the "name" field. func NameLTE(v string) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldName), v)) }) } // NameContains applies the Contains predicate on the "name" field. func NameContains(v string) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.Contains(s.C(FieldName), v)) }) } // NameHasPrefix applies the HasPrefix predicate on the "name" field. func NameHasPrefix(v string) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.HasPrefix(s.C(FieldName), v)) }) } // NameHasSuffix applies the HasSuffix predicate on the "name" field. func NameHasSuffix(v string) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.HasSuffix(s.C(FieldName), v)) }) } // NameEqualFold applies the EqualFold predicate on the "name" field. func NameEqualFold(v string) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.EqualFold(s.C(FieldName), v)) }) } // NameContainsFold applies the ContainsFold predicate on the "name" field. func NameContainsFold(v string) predicate.User { return predicate.User(func(s *sql.Selector) { s.Where(sql.ContainsFold(s.C(FieldName), v)) }) } // HasCars applies the HasEdge predicate on the "cars" edge. func HasCars() predicate.User { return predicate.User(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(CarsTable, FieldID), sqlgraph.Edge(sqlgraph.O2M, false, CarsTable, CarsColumn), ) sqlgraph.HasNeighbors(s, step) }) } // HasCarsWith applies the HasEdge predicate on the "cars" edge with a given conditions (other predicates). func HasCarsWith(preds ...predicate.Car) predicate.User { return predicate.User(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(CarsInverseTable, FieldID), sqlgraph.Edge(sqlgraph.O2M, false, CarsTable, CarsColumn), ) sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) { for _, p := range preds { p(s) } }) }) } // HasGroups applies the HasEdge predicate on the "groups" edge. func HasGroups() predicate.User { return predicate.User(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(GroupsTable, FieldID), sqlgraph.Edge(sqlgraph.M2M, true, GroupsTable, GroupsPrimaryKey...), ) sqlgraph.HasNeighbors(s, step) }) } // HasGroupsWith applies the HasEdge predicate on the "groups" edge with a given conditions (other predicates). func HasGroupsWith(preds ...predicate.Group) predicate.User { return predicate.User(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(GroupsInverseTable, FieldID), sqlgraph.Edge(sqlgraph.M2M, true, GroupsTable, GroupsPrimaryKey...), ) sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) { for _, p := range preds { p(s) } }) }) } // And groups list of predicates with the AND operator between them. func And(predicates ...predicate.User) predicate.User { return predicate.User(func(s *sql.Selector) { s1 := s.Clone().SetP(nil) for _, p := range predicates { p(s1) } s.Where(s1.P()) }) } // Or groups list of predicates with the OR operator between them. func Or(predicates ...predicate.User) predicate.User { return predicate.User(func(s *sql.Selector) { s1 := s.Clone().SetP(nil) for i, p := range predicates { if i > 0 { s1.Or() } p(s1) } s.Where(s1.P()) }) } // Not applies the not operator on the given predicate. func Not(p predicate.User) predicate.User { return predicate.User(func(s *sql.Selector) { p(s.Not()) }) }