
@ryan_plant blog.ryanplant.com

COURSE AUTHOR
Ryan Plant

Understanding Topics, Partitions, and
Brokers

Demo

Basic Apache Kafka installation:
- Download the binary package
- Extract the archive
- Explore the installation directory

contents

Prerequisites:
- Linux operating system
- Java 8 JDK installed
- Scala 2.11.x installed

Central Kafka abstraction

Named feed or category of messages
- Producers produce to a topic
- Consumers consume from a topic

Logical entity

Physically represented as a log

Apache Kafka Topics

Broker Broker Broker Broker
“MY_TOPIC”

“MY_OTHER_TOPIC”

to: “my_topic”

from: “my_other_topic”from: “my_topic”

to: “my_other_topic”

“MY_TOPIC”

0 1 2 4 5 7 8 9

append-only
ordered sequence (by time)
immutable facts as events

3

older newer

6

An architectural style or approach to maintaining an
application’s state by capturing all changes as a
sequence of time-ordered, immutable events.

Event Sourcing

“MY_TOPIC”

0 1 2 4 5 7 8 93

older newer

6

Each message has a:
- Timestamp
- Referenceable identifier
- Payload (binary)

Message Content

{id}

{timestamp}

[data content]

“MY_TOPIC”

0 1 2 4 5 7 8 93 6

A placeholder:
- Last read message position
- Maintained by the Kafka Consumer
- Corresponds to the message identifier

The Offset

“MY_TOPIC”

0 1 2 n3

“from beginning”

offset: 0offset: 0
offset: 3

“MY_TOPIC”

0 1 2 4 5 7 8 93 6

3

“from last offset”

8

Apache Kafka retains all published
messages regardless of consumption

Retention period is configurable
- Default is 168 hours or seven days

Retention period is defined on a per-topic
basis

Physical storage resources can constrain
message retention

Message Retention Policy

Demo

Simple Kafka cluster setup

Creating an Apache Kafka topic

Producing some messages to the topic

Consuming the messages from the topic

Look for:
- Built-in Producer and Consumer

clients
- The ordering of the messages within a

topic

Don’t get too caught up on:
- The command line parameters and

options

Does Look This Look Familiar?

TOPIC

0 1 2 4 5 7 8 93 6

 Append-only
 Ordered sequence (by time)
 Immutable facts as events

older newer

Source of truth

Physically stored and maintained

Higher-order data structures derive from
the log

- Tables, indexes, views, etc.

Point of recovery

Basis for replication and distribution

Transaction or Commit Logs

Apache Kafka is publish-
subscribe messaging

rethought as a distributed
commit log.

Each topic has one or more partitions

A partition is the basis for which Kafka can:
- Scale
- Become fault-tolerant
- Achieve higher levels of throughput

Each partition is maintained on at least one
or more Brokers

Kafka Partitions

(Partition == Log)

Partition Partition Partition

~$ bin/kafka-topics.sh --create --topic my_topic \

> --zookeeper localhost:2181 \

> --partitions 1 \

> --replication-factor 1

Creating a Topic: Single Partition

Partition 0

“my_topic”

0 1 2 4 5 7 n3 6 8

Broker

/tmp/kafka-logs/{topic}-{partition}

.index

.log

“my_topic-0”

Each partition must fit entirely on one machine.

In general, the scalability of
Apache Kafka is determined
by the number of partitions
being managed by multiple

broker nodes.

~$ bin/kafka-topics.sh --create --topic my_topic \

> --zookeeper localhost:2181 \

> --partitions 3 \

> --replication-factor 1

Creating a Topic: Multiple Partitions

Partition 0

0 1 2 4 5 7 93 6

older newer

8

Partition 1

Partition 2

“my_topic”

0 1 2 4 5 7 93 6 8

0 1 2 4 5 83 6 7

id=0 id=1 id=2

ZK

$.s
h--create

--topic my_topic
--partitions 3
--rep-factor 1

available brokers1

2

my_topic-0my_topic-1 my_topic-2
metadatametadata metadata

assign partitions to leaders

3 status checks

I have
partition 1 of

my_topic

I have
partition 0 of

my_topic

I have
partition 2 of

my_topic

ZK

id=0 id=1 id=2

my_topic-0my_topic-1 my_topic-2
metadatametadata metadata

$.s
h

--broker-list {broker:2}
--topic my_topic
… metadata

ZK

id=0 id=1 id=2

my_topic-0my_topic-1 my_topic-2
metadatametadata metadata

$.s
h

--zookeeper {..}
--topic my_topic
…

metadata

3
2

1

The more partitions the greater the
Zookeeper overhead

- With large partition numbers ensure
proper ZK capacity

Message ordering can become complex
- Single partition for global ordering
- Consumer-handling for ordering

The more partitions the longer the leader
fail-over time

Partitioning Trade-offs

What about fault-tolerance?
- Broker failure
- Network issue
- Disk failure

Something Is Missing

ZK

id=0 id=1 id=2

my_topic-0my_topic-1 my_topic-2

No redundancy between nodes…

Houston, we
have a

problem…

my_topic-0

I now have
partition 0 of

my_topic

my_topic
broker id: 2
partitions: 0, 2

~$ bin/kafka-topics.sh --create --topic my_topic \

> --zookeeper localhost:2181 \

> --partitions 3 \

> --replication-factor 1

Don’t Forget the Replication Factor

Reliable work distribution
- Redundancy of messages
- Cluster resiliency
- Fault-tolerance

Guarantees
- N-1 broker failure tolerance
- 2 or 3 minimum

Configured on a per-topic basis

Replication Factor

~$ bin/kafka-topics.sh --create --topic my_topic \

> --zookeeper localhost:2181 \

> --partitions 3 \

> --replication-factor 3

Multiple Replica Sets

id=0 id=1 id=2

ZK

$.s
h--create

--topic my_topic
--partitions 3
--rep-factor 3

my_topic-0my_topic-1 my_topic-2
metadatametadata metadata

id=7 id=5 id=8 id=3 id=4 id=6

my_topic-1
(replica)

my_topic-1
(replica)

my_topic-0
(replica)

my_topic-0
(replica)

my_topic-2
(replica)

my_topic-2
(replica)

ISR:
3

ISR:
3

ISR:
3

id=0 id=1 id=2

ZK

$.s
h--create

--topic my_topic
--partitions 3
--rep-factor 3

my_topic-0my_topic-1 my_topic-2
metadatametadata metadata

id=7 id=5 id=8 id=3 id=4 id=6

my_topic-1
(replica)

my_topic-1
(replica)

my_topic-0
(replica)

my_topic-2
(replica)

my_topic-2
(replica)

ISR:
3

ISR:
2

ISR:
3

~$ bin/kafka-topics.sh --describe --topic my_topic \

> --zookeeper localhost:2181

Viewing Topic State

Demo

Multi-broker Kafka Setup

Single Partition Topic

Replication Factor of 3

Look for:
- Using the --describe command
- Failure handling
- Continued operation

Detailed explanation and view:
- Topics and Partitions
- Broker partition management and

behavior

Aligned with distributed systems
principles

- Leader election of partitions
- Work distribution and failover

Kafka in action
- Demos
- Configuration

Foundation upon which to dive deeper
into Producers and Consumers

Summary

	Understanding Topics, Partitions, and Brokers
	Slide Number 2
	Apache Kafka Topics
	Slide Number 4
	Slide Number 5
	Event Sourcing
	Slide Number 7
	Message Content
	Slide Number 9
	The Offset
	Slide Number 11
	Slide Number 12
	Message Retention Policy
	Slide Number 14
	Does Look This Look Familiar?
	Transaction or Commit Logs
	Apache Kafka is publish-subscribe messaging rethought as a distributed commit log.
	Kafka Partitions
	Creating a Topic: Single Partition
	Slide Number 20
	In general, the scalability of Apache Kafka is determined by the number of partitions being managed by multiple broker nodes.
	Creating a Topic: Multiple Partitions
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Partitioning Trade-offs
	Something Is Missing
	Slide Number 29
	Don’t Forget the Replication Factor
	Replication Factor
	Multiple Replica Sets
	Slide Number 33
	Slide Number 34
	Viewing Topic State
	Slide Number 36
	Slide Number 37

