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Basic Apache Kafka installation:
- Download the binary package
- Extract the archive
- Explore the installation directory 

contents

Prerequisites:
- Linux operating system
- Java 8 JDK installed
- Scala 2.11.x installed



   
 

Central Kafka abstraction

Named feed or category of messages
- Producers produce to a topic
- Consumers consume from a topic

Logical entity

Physically represented as a log

Apache Kafka Topics
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An architectural style or approach to maintaining an 
application’s state by capturing all changes as a 
sequence of time-ordered, immutable events.

Event Sourcing
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Each message has a:
- Timestamp
- Referenceable identifier
- Payload (binary)

Message Content

{id}

{timestamp}

[data content]
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A placeholder:
- Last read message position
- Maintained by the Kafka Consumer
- Corresponds to the message identifier

The Offset
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Apache Kafka retains all published 
messages regardless of consumption

Retention period is configurable
- Default is 168 hours or seven days

Retention period is defined on a per-topic 
basis

Physical storage resources can constrain 
message retention

Message Retention Policy
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Simple Kafka cluster setup

Creating an Apache Kafka topic

Producing some messages to the topic

Consuming the messages from the topic

Look for:
- Built-in Producer and Consumer 

clients
- The ordering of the messages within a 

topic

Don’t get too caught up on:
- The command line parameters and 

options



Does Look This Look Familiar?

TOPIC
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 Immutable facts as events
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Source of truth

Physically stored and maintained

Higher-order data structures derive from 
the log

- Tables, indexes, views, etc.

Point of recovery

Basis for replication and distribution

Transaction or Commit Logs



Apache Kafka is publish-
subscribe messaging 

rethought as a distributed 
commit log.



   
 

Each topic has one or more partitions

A partition is the basis for which Kafka can:
- Scale
- Become fault-tolerant
- Achieve higher levels of throughput

Each partition is maintained on at least one 
or more Brokers

Kafka Partitions

(Partition == Log)

Partition Partition Partition



~$ bin/kafka-topics.sh --create --topic my_topic \

> --zookeeper localhost:2181 \

> --partitions 1 \

> --replication-factor 1

Creating a Topic: Single Partition



Partition 0

“my_topic”

0 1 2 4 5 7 n3 6 8

Broker

/tmp/kafka-logs/{topic}-{partition}

.index

.log

“my_topic-0”

Each partition must fit entirely on one machine.



In general, the scalability of 
Apache Kafka is determined 
by the number of partitions 
being managed by multiple 

broker nodes.



~$ bin/kafka-topics.sh --create --topic my_topic \

> --zookeeper localhost:2181 \

> --partitions 3 \

> --replication-factor 1

Creating a Topic: Multiple Partitions
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Partition 2
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3 status checks

I have 
partition 1 of 

my_topic

I have 
partition 0 of 

my_topic
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The more partitions the greater the 
Zookeeper overhead

- With large partition numbers ensure 
proper ZK capacity

Message ordering can become complex
- Single partition for global ordering
- Consumer-handling for ordering

The more partitions the longer the leader 
fail-over time

Partitioning Trade-offs



   
 

What about fault-tolerance?
- Broker failure
- Network issue
- Disk failure

Something Is Missing



ZK

id=0 id=1 id=2

my_topic-0my_topic-1 my_topic-2

No redundancy between nodes…

Houston, we 
have a 

problem…

my_topic-0

I now have 
partition 0 of 

my_topic

my_topic
broker id: 2
partitions: 0, 2



~$ bin/kafka-topics.sh --create --topic my_topic \

> --zookeeper localhost:2181 \

> --partitions 3 \

> --replication-factor 1

Don’t Forget the Replication Factor



   
 

Reliable work distribution
- Redundancy of messages
- Cluster resiliency
- Fault-tolerance

Guarantees
- N-1 broker failure tolerance
- 2 or 3 minimum

Configured on a per-topic basis

Replication Factor



~$ bin/kafka-topics.sh --create --topic my_topic \

> --zookeeper localhost:2181 \

> --partitions 3 \

> --replication-factor 3

Multiple Replica Sets
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~$ bin/kafka-topics.sh --describe --topic my_topic \

> --zookeeper localhost:2181

Viewing Topic State
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Multi-broker Kafka Setup

Single Partition Topic

Replication Factor of 3

Look for:
- Using the --describe command
- Failure handling
- Continued operation



   
 

Detailed explanation and view:
- Topics and Partitions
- Broker partition management and 

behavior

Aligned with distributed systems 
principles

- Leader election of partitions
- Work distribution and failover

Kafka in action
- Demos
- Configuration

Foundation upon which to dive deeper 
into Producers and Consumers

Summary
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